JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, cilt.133, sa.26, ss.10239-10250, 2011 (SCI-Expanded)
We report here on the rational synthesis, processing, and dielectric properties of novel layer-by-layer organic/inorganic hybrid multilayer dielectric films enabled by polarizable π-electron phosphonic acid building blocks and ultrathin ZrO2 layers. These new zirconia-based self-assembled nanodielectric (Zr-SAND) films (5–12 nm thick) are readily fabricated via solution processes under ambient atmosphere. Attractive Zr-SAND properties include amenability to accurate control of film thickness, large-area uniformity, well-defined nanostructure, exceptionally large electrical capacitance (up to 750 nF/cm2), excellent insulating properties (leakage current densities as low as 10–7 A/cm2), and excellent thermal stability. Thin-film transistors (TFTs) fabricated with pentacene and PDIF-CN2 as representative organic semiconductors and zinc–tin–oxide (Zn–Sn–O) as a representative inorganic semiconductor function well at low voltages (<±4.0 V). Furthermore, the TFT performance parameters of representative organic semiconductors deposited on Zr-SAND films, functionalized on the surface with various alkylphosphonic acid self-assembled monolayers, are investigated and shown to correlate closely with the alkylphosphonic acid chain dimensions.