Compensating energy demand of public transport and yielding green hydrogen with floating photovoltaic power plant


Koca K.

Process Safety and Environmental Protection, vol.186, pp.1097-1105, 2024 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 186
  • Publication Date: 2024
  • Doi Number: 10.1016/j.psep.2024.03.122
  • Journal Name: Process Safety and Environmental Protection
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, Greenfile, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.1097-1105
  • Keywords: Floating photovoltaic plant, Hydrogen production, Offshore renewable resource, Public transport energy demand, Yamula Dam
  • Abdullah Gül University Affiliated: Yes

Abstract

The last three decades have seen a dramatic increase in the renewable energy sector as a result of increased human energy consumption and environmental concerns about fossil fuels. Offshore renewable energy sources are the most alluring and promising technologies because of more energy potential, less space, and visual restrictions than onshore ones. Among those, floating solar photovoltaic (FPV) has a remarkable reputation. The present study focuses on a viable way to replace energy resources derived from fossil fuels with renewable solar energy. In this regard, electrical energy demand is investigated where a floating photovoltaic system and integrated hydrogen production unit are employed on water surface of Yamula Dam. Energy demand of public trams would be compensated with electricity generated by FPV and rest of energy would be utilized for hydrogen production. Key results illustrated that in various scenarios, the energy generation amounts were around 31×106 kW, 32×106 kW, and 39×106 kW, while the energy consumption amounts were approximately 24×106 kW. It was evident that the energy created more than offset the amount consumed. It was also note that the total costs of entire system were $94.1 M, $78.5 M and $71.2 M according to the different cases. It was also observed that in October and November, the remaining energy from the Bozankaya tram produced the most hydrogen with 125 kg, whereas in September and October, the remaining energy from the Sirio tram produced approximately 70 kg.