Apoptotic Effects of Quercitrin on DLD-1 Colon Cancer Cell Line


Creative Commons License

Cincin Z. B. , Unlu M. , Kiran B., Bireller E. S. , Baran Y., Cakmakoglu B.

PATHOLOGY & ONCOLOGY RESEARCH, vol.21, no.2, pp.333-338, 2015 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 21 Issue: 2
  • Publication Date: 2015
  • Doi Number: 10.1007/s12253-014-9825-3
  • Title of Journal : PATHOLOGY & ONCOLOGY RESEARCH
  • Page Numbers: pp.333-338

Abstract

Quercetin, which is the most abundant bioflavonoid compound, is mainly present in the glycoside form of quercitrin. Although different studies indicated that quercitrin is a potent antioxidant, the action of this compound is not well understood. In this study, we investigated whether quercitrin has apoptotic and antiproliferative effects in DLD-1 colon cancer cell lines. Time and dose dependent antiproliferative and apoptotic effects of quercitrin were subsequently determined by WST-1 cell proliferation assay, lactate dehydrogenase (LDH) cytotoxicity assay, detection of nucleosome enrichment factor, changes in caspase-3 activity, loss of mitochondrial membrane potential (MMP) and also the localization of phosphatidylserine (PS) in the plasma membrane. There were significant increases in caspase-3 activity, loss of MMP, and increases in the apoptotic cell population in response to quercitrin in DLD-1 colon cancer cells in a time- and dose-dependent manner. These results revealed that quercitrin has antiproliferative and apoptotic effects on colon cancer cells. Quercitrin activity supported with in vivo analyses could be a biomarker candicate for early colorectal carcinoma.

Quercetin, which is the most abundant bioflavonoid compound, is mainly present in the glycoside form of quercitrin. Although different studies indicated that quercitrin is a potent antioxidant, the action of this compound is not well understood. In this study, we investigated whether quercitrin has apoptotic and antiproliferative effects in DLD-1 colon cancer cell lines. Time and dose dependent antiproliferative and apoptotic effects of quercitrin were subsequently determined by WST-1 cell proliferation assay, lactate dehydrogenase (LDH) cytotoxicity assay, detection of nucleosome enrichment factor, changes in caspase-3 activity, loss of mitochondrial membrane potential (MMP) and also the localization of phosphatidylserine (PS) in the plasma membrane. There were significant increases in caspase-3 activity, loss of MMP, and increases in the apoptotic cell population in response to quercitrin in DLD-1 colon cancer cells in a time- and dose-dependent manner. These results revealed that quercitrin has antiproliferative and apoptotic effects on colon cancer cells. Quercitrin activity supported with in vivo analyses could be a biomarker candicate for early colorectal carcinoma.