2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), Gaziantep, Türkiye, 27 - 28 Haziran 2025, ss.1-8, (Tam Metin Bildiri)
In this study, convolutional neural networks (CNN)-based approaches were compared to classify eye diseases using transfer learning techniques. A series of data augmentation strategies, including random rotation, shifting, shearing, zooming, and horizontal flipping, were applied to increase the training data’s robustness and diversity. Several state-of-the-art CNNs, including ResNet50, VGG19, EfficientNetB0, Xception, InceptionV3, DenseNet121, MobileNetV2, NASNetMobile, and ConvNeXtBase, were fine-tuned through transfer learning. During training, models were evaluated based on their accuracy, training time, and validation performance, while early stopping mechanisms were employed to prevent overfitting. Experimental results demonstrated that DenseNet121 achieved the highest validation accuracy (