Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites

Creative Commons License

Zhukovsky S. V., Ozel T., Mutlugun E., Gaponik N., Eychmuller A., Lavrinenko A. V., ...More

OPTICS EXPRESS, vol.22, no.15, pp.18290-18298, 2014 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 22 Issue: 15
  • Publication Date: 2014
  • Doi Number: 10.1364/oe.22.018290
  • Journal Name: OPTICS EXPRESS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.18290-18298
  • Abdullah Gül University Affiliated: Yes


We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increased photonic density of states and strong enhancement of quantum dot luminescence. This explains the results of recent experiments [T. Ozel et al., ACS Nano 5, 1328 (2011)] and confirms that hyperbolic metamaterials are capable of increasing the radiative decay rate of emission centers inside them. The proposed theoretical framework can also be used to design quantum-dot/nanoplasmonic composites with optimized luminescence enhancement. (C) 2014 Optical Society of America