RPI-1 (human DCDC2) displays functional redundancy with Nephronophthisis 4 in regulating cilia biogenesis in C. elegans

Creative Commons License

Kaplan O. I.

Turkish Journal of Biology, vol.47, no.1, pp.74-83, 2023 (SCI-Expanded) identifier identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 47 Issue: 1
  • Publication Date: 2023
  • Doi Number: 10.55730/1300-0152.2642
  • Journal Name: Turkish Journal of Biology
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Veterinary Science Database, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.74-83
  • Keywords: DCDC2, cilia, NPHP4, rare diseases
  • Abdullah Gül University Affiliated: Yes


Projecting from most cell surfaces, cilia serve as important hubs for sensory and signaling processes and have been linked to a variety of human disorders, including Bardet-Biedl Syndrome (BBS), Meckel-Gruber Syndrome (MKS), Nephronophthisis (NPHP), and Joubert Syndrome, and these diseases are collectively known as a ciliopathy. DCDC2 is a ciliopathy protein that localizes to cilia; nevertheless, our understanding of the role of DCDC2 in cilia is still limited. We employed C. elegans to investigate the function of C. elegans RPI-1, a Caenorhabditis elegans ortholog of human DCDC2, in cilia and found that C. elegans RPI-1 localizes to the entire ciliary axoneme, but is not present in the transition zone and basal body. We generated a null mutant of C. elegans rpi-1, and our analysis with a range of fluorescence-based ciliary markers revealed that DCDC2 and nephronophthisis 4 (NPHP-4/NPHP4) display functional redundant roles in regulating cilia length and cilia positions. Taken together, our analysis discovered a novel genetic interaction between two ciliopathy disease genes (RPI-1/DCDC2 and NPHP-4/NPHP4) in C. elegans.