Shell-shaped active layers for omnidirectional organic photovoltaic cells


HAH D.

Journal of Photonics for Energy, cilt.12, sa.4, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 4
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1117/1.jpe.12.048501
  • Dergi Adı: Journal of Photonics for Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC
  • Anahtar Kelimeler: organic photovoltaic cells, light trapping, energy conversion efficiency, omnidirectionality
  • Abdullah Gül Üniversitesi Adresli: Evet

Özet

© 2022 Society of Photo-Optical Instrumentation Engineers (SPIE).For the employment of organic photovoltaic cells in wearable electronic systems, improvements in energy conversion efficiency and omnidirectionality (angular coverage) are highly appreciated. This study aims at those improvements by introducing shell-shaped active layers. The proposed device structures enhance light absorption and angular range through light coupling to guided modes in the active layer. Two shapes, i.e., a triangle and a semicircle, are examined for the shell cross-sections. Numerical simulation using finite-element analysis and finite-difference time-domain methods demonstrates that the devices with the triangular-shell-shaped active layers exhibit an average absorption enhancement of up to 63% for transverse electric (TE)-polarization and up to 32% for transverse magnetic (TM)-polarization when compared with the flat active layers of the same thicknesses. The average enhancements of the semicircular-shell-shaped active layers are found to be slightly lower than those values, with 60% for TE and 28% for TM. The examined structures also show good omnidirectionality with decent absorption up to an 81 deg incidence angle for the triangular-shell-shaped device and up to a 76 deg angle for the semicircular one when TM polarization is considered. These absorption enhancements and improved angular coverages make the proposed structures highly attractive for wearable electronic system applications.