JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, cilt.134, sa.26, ss.10966-10973, 2012 (SCI-Expanded)
Understanding the relationship between molecular/macromolecular architecture and organic thin film transistor (TFT) performance is essential for realizing next-generation high-performance organic electronics. In this regard, planar π-conjugated, electron-neutral (i.e., neither highly electron-rich nor highly electron-deficient) building blocks represent a major goal for polymeric semiconductors, however their realization presents synthetic challenges. Here we report that an easily accessible (minimal synthetic steps), electron-neutral thienyl-vinylene (TVT)-based building block having weak intramolecular S···O “conformational locks” affords a new class of stable, structurally planar, solution-processable, high-mobility, molecular, and macromolecular semiconductors. The attraction of merging the weak TVTelectron richness with supramolecular planarization is evident in the DFT-computed electronic structures, favorable MO energetics, X-ray diffraction-derived molecular structures, experimental lattice coehesion metrics, and excellent TFT performance. TVT-based polymer TFTs exhibit stable carrier mobilities in air as high as 0.5 and 0.05 cm2/V·s (n- and p-type, respectively). All-TVT polymer-based complementary inverter circuitry exhibiting high voltage gains (50) and ring oscillator circuitry with high fosc(1.25 kHz) is readily fabricated from these materials by simple inkjet printing.