PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2019 (SCI İndekslerine Giren Dergi)
Magnetic micromanipulators are capable of generating wide range of magnetic forces to manipulate magnetic microparticles for biomedical applications. In this study, a multipole magnetic micromanipulator system including electromagnets, driver circuitry and control unit is designed, modeled and implemented. The micromanipulator can produce a broad range of magnetic forces up to 25 pN on a single magnetic microparticle (1-10 mu m diameter) that is 5 mm away from the electromagnet core tip. Both linear and nonlinear controllers are designed and implemented, and the proposed nonlinear controller produces smooth control currents to assure closed-loop stability of the system with 1 s non-overshoot transient response and zero steady-state tracking error. The maximum output current of the driver circuitry is set to 1 A. The single particle at the center is moved at a speed of 5 mm/s. The fully automatic system can be utilized in applications related to single cell or microparticle manipulations.