Classification of apple images using support vector machines and deep residual networks


Adige S., KURBAN R., Durmuş A., KARAKÖSE E.

Neural Computing and Applications, vol.35, no.16, pp.12073-12087, 2023 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 35 Issue: 16
  • Publication Date: 2023
  • Doi Number: 10.1007/s00521-023-08340-3
  • Journal Name: Neural Computing and Applications
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Applied Science & Technology Source, Biotechnology Research Abstracts, Compendex, Computer & Applied Sciences, Index Islamicus, INSPEC, zbMATH
  • Page Numbers: pp.12073-12087
  • Keywords: Support vector machines, Deep residual networks, Apple classification, FEATURES
  • Abdullah Gül University Affiliated: No

Abstract

One of the most important problems for farmers who produce large amounts of apples is the classification of the apples according to their types in a short time without handling them. Support vector machines (SVM) and deep residual networks (ResNet-50) are machine learning methods that are able to solve general classification situations. In this study, the classification of apple varieties according to their genus is made using machine learning algorithms. A database is created by capturing 120 images from six different apple species. Bag of visual words (BoVW) treat image features as words representing a sparse vector of occurrences over the vocabulary. BoVW features are classified using SVM. On the other hand, ResNet-50 is a convolutional neural network that is 50 layers deep with embedded feature extraction layers. The pre-trained ResNet-50 architecture is retrained for apple classification using transfer learning. In the experiments, our dataset is divided into three cases: Case 1: 40% train, 60% test; Case 2: 60% train, 40% test; and Case 3: 80% train, 20% test. As a result, the linear, Gaussian, and polynomial kernel functions used in the BoVW + SVM algorithm achieved 88%, 92%, and 96% accuracy in Case 3, respectively. In the ResNet-50 classification, the root-mean-square propagation (rmsprop), adaptive moment estimation (adam), and stochastic gradient descent with momentum (sgdm) training algorithms achieved 86%, 89%, and 90% accuracy, respectively, in the set of Case 3.