Observation of Biexcitons in Nanocrystal Solids in the Presence of Photocharging

Creative Commons License

Cihan A. F., Martinez P. L. H., Kelestemur Y., Mutlugun E., Demir H. V.

ACS NANO, vol.7, no.6, pp.4799-4809, 2013 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 7 Issue: 6
  • Publication Date: 2013
  • Doi Number: 10.1021/nn305259g
  • Journal Name: ACS NANO
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.4799-4809
  • Abdullah Gül University Affiliated: No


In nanocrystal quantum dots (NQDs), generating multiexcitons offers an enabling tool for enhancing NOD-based devices. However, the photocharging effect makes understanding multiexciton kinetics In NQD solids fundamentally challenging, which is critically important for solid-state devices. To date, this lack of understanding and the spectral temporal aspects of the multiexciton recombination still remain unresolved In solid NOD ensembles, which is mainly due to the confusion with recombination of carriers in charged NQDs. In this work, we reveal the spectral temporal behavior of biexcitons (BXs) in the presence of photocharging using near-unity quantum yield CdSe/CdS NQDs exhibiting substantial suppression of Auger recombination. Here, recombinations of biexcitons and single excitons (Xs) are successfully resolved in the presence of Mons In the ensemble measurements of time-correlated single-photon counting at variable excitation intensities and varying emission wavelengths. The spectral behaviors of BXs and Xs are obtained for three NOD samples with different core sizes, revealing the strength tunability of the X-X interaction energy In these NQDs. The extraction of spectrally resolved X, BX, and Won kinetics, which are otherwise spectrally unresolved, is enabled by our approach introducing integrated time-resolved fluorescence. The results are further experimentally verified by cross-checking excitation intensity and exposure time dependencies as well as the temporal evolutions of the photoluminescence spectra, all of which prove to be consistent. The BX and X energies are also confirmed by theoretical calculations. These findings fill an Important gap in understanding the spectral dynamics of multiexcitons in such NQD solids under the influence of photocharging effects, paving the way to engineering of multiexciton kinetics in nanocrystal optoelectronics, including NOD-based lasing, photovoltaics, and photodetection.