The Semianalytical Solutions for Stiff Systems of Ordinary Differential Equations by Using Variational Iteration Method and Modified Variational Iteration Method with Comparison to Exact Solutions


Atay M. T., KILIC O.

MATHEMATICAL PROBLEMS IN ENGINEERING, 2013 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2013
  • Doi Number: 10.1155/2013/143915
  • Journal Name: MATHEMATICAL PROBLEMS IN ENGINEERING
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Abdullah Gül University Affiliated: No

Abstract

The Variational Iteration Method (VIM) and Modified Variational Iteration Method (MVIM) are used to find solutions of systems of stiff ordinary differential equations for both linear and nonlinear problems. Some examples are given to illustrate the accuracy and effectiveness of these methods. We compare our results with exact results. In some studies related to stiff ordinary differential equations, problems were solved by Adomian Decomposition Method and VIM and Homotopy Perturbation Method. Comparisons with exact solutions reveal that the Variational Iteration Method (VIM) and the Modified Variational Iteration Method (MVIM) are easier to implement. In fact, these methods are promising methods for various systems of linear and nonlinear stiff ordinary differential equations. Furthermore, VIM, or in some cases MVIM, is giving exact solutions in linear cases and very satisfactory solutions when compared to exact solutions for nonlinear cases depending on the stiffness ratio of the stiff system to be solved.