Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants


Gurel S., Yagci M. B., Bal B., Canadinc D.

Materials Chemistry and Physics, cilt.254, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 254
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.matchemphys.2020.123377
  • Dergi Adı: Materials Chemistry and Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Chimica, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: High entropy alloy, Corrosion, Medical implant, TiTaHfNbZr, TiTaHfMoZr, TiTaHfNb, RAY PHOTOELECTRON-SPECTROSCOPY, SIMULATED BODY-FLUID, MECHANICAL-PROPERTIES, MICROSTRUCTURE, SURFACE, RESISTANCE, XPS, DISSOLUTION, DEPENDENCE, ELEMENTS
  • Abdullah Gül Üniversitesi Adresli: Evet

Özet

© 2020 Elsevier B.V.This paper reports on the corrosion behavior of three TiTaHf-based high entropy alloys (HEAs) in simulated body fluid (SBF) and artificial saliva (AS) in order to assess their potential utility as implant materials. Specifically, TiTaHfNb, TiTaHfNbZr and TiTaHfMoZr HEAs were subjected to static immersion experiments in SBF and AS, and both the surfaces of the samples and the immersion fluids were thoroughly examined with the state of the art techniques. The experimental results presented herein revealed that the presence of Zr and Nb in the TiTaHf-based samples enhanced corrosion performance with reduced ion release and better surface properties, while Mo addition resulted in an inhomogeneous microstructure, leading to dendrite structures and significant amount of ion release upon immersion in both media. Furthermore, a protective passive layer formation or crystallization was present on all HEA surfaces, implying that corrosion resistance can be sustained in long-term applications. Overall, the set of findings presented herein constitute an early indication of the potential of the TiTaHf-based HEAs to be utilized as implant materials.